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Abstract

Previously, ‘flobject analysis’ was introduced as a
method for using motion or stereo disparity informa-
tion to train better models of static images. During
training, but not during testing, optic flow is used as
a cue for factorizing appearance-based image features
into those belonging to different flow-defined objects,
or flobjects. Here, we describe how the image epit-
ome can be extended to model flobjects and introduce
a suitable learning algorithm. Using the CityCars and
CityPedestrians datasets, we study the tasks of object
classification and localization. Our method performs
significantly better than the original LDA-based flob-
ject analysis technique, SIFT-based methods with and
without spatial pyramid matching, and gist descriptors.

1. Introduction

Humans excel at classifying static test images, but
they benefit hugely by incorporating motion and stereo
disparity information during training [10]. In contrast,
most artificial vision systems do not follow this ap-
proach. This motivated us to ask “Can motion or stereo
disparity information be used to train better meth-
ods for extracting representations from static images?”
The idea is that clustering a flow field often elucidates
objects with coherent flow, or ‘flobjects’. We used
this pop-out effect in a bag-of-SIFT-words LDA model
(FLDA) to factorize the appearance features from dif-
ferent objects. Because of noise in the flow and the
aperture problem, it was found that it is important to
jointly learn to factorize appearance-based features and
cluster flow in a probabilistic framework [7].

Here, to model appearance features and link regions
with similar flow, we propose using an image epitome
[4] instead of the LDA [1] model used in the original
flobject analyzer. Each location in a ‘flobject epitome’
is associated with an appearance feature and a distribu-
tion over flobject labels (Fig. 1). The flobject epitome
(epitome and label distribution map) is learnt using
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Figure 1: Epitomic flobject analysis takes image-flow
field pairs and iteratively estimates a flobject epitome
that has a distribution over flobject labels (red and
green) at each position, and labels each patch and flow
vector. Labels are not provided during training.

an unsupervised EM algorithm that iteratively labels
patches and flow vectors using the current flobject epit-
ome and then updates the flobject epitome. The result-
ing flobject epitome can be used without flow to label
patches in test images, as shown in Fig. 4.

The previous flobject analyzer (FLDA) made use of
a latent Dirichlet allocation (LDA) [1] model to train
bags-of-SIFT-words [8] models for objects given pairs
of consecutive video frames, similar to the setup in [15].
At test time, FLDA factorizes an image’s SIFT features
into individual object SIFT histograms. The FLDA
descriptors created by concatenating these individual
histograms were shown to outperform other state-of-
the-art classifiers on the CityCars and CityPedestrians
datasets [7].

Despite its good performance, FLDA suffers from
two drawbacks. First, FLDA does not account for
the spatial coherence of appearance features. This



severely limits the utility of the model. Flagging im-
age locations whose features are associated with each
object results in spatially incoherent labelings. As
shown below, by accounting for spatial coherence us-
ing an epitome, we are able to significantly improve
performance on classification and localization. Second,
FLDA requires running an expensive Markov Chain
Monte Carlo (MCMC) chain to perform inference. We
find that a much faster EM algorithm can be used to
train flobject epitomes.

2. Related Work

While we focus on the task of object classification,
the core idea of training a model using data with mo-
tion cues to improve test performance on static images
has been explored extensively in the field of image seg-
mentation. The Segmentation According to Natural
Examples (SANE) algorithm developed by Ross and
Kaebling [11] uses background subtraction to learn to
segment static images from video training data. From
a high level our approach is also similar to the tech-
niques used by Russel et al. [12] and Lee and Grau-
man [6] for unsupervised object discovery from a col-
lection of static images. They use NCuts [13] to par-
tition each image into segments, and discover objects
by grouping segments that are similar across frames.
Grouping is done using LDA in the case of Russel et
al., or context-aware clustering, in the case of Lee and
Grauman. Analogously, our method partitions images
using optical flow and groups partitions using an epit-
ome model. One benefit to using a robust statistical
model to handle the noisy flow vectors is the ability of
the model to trade off trusting the optical flow vectors
with trusting the appearance model. This allows the
image partitioning to influence the appearance model
and vice versa. Lastly, Sivic et al. [14] discovers objects
by identifying co-occurrences of HOG features across
images and was an inspiration for both the original
FLDA model and this work.

3. Epitomes

There are different ways to account for spatial co-
herence of appearance features, but one of the simplest
and quite effective ways is to use an image epitome [4].
Image epitomes keep track of features that tend to oc-
cur adjacently in training images, by representing the
features in a spatial feature map. Also, since epitomes
can directly model pixel intensities, it is possible to vi-
sually interpret the features that are modeled by the
epitome.

In the standard epitome model, a training set of N
images of size H ×W is used to find a representative

E × E feature map and corresponding variance map,
called the image epitome, in such a way that any D×D
patch from the image collection can be well explained
by some D ×D patch from the epitome.

The parameters in an epitome consist of the mean ηj
and std. dev. νj of the appearance feature (e.g., pixel
intensity, color value, or texture feature) at coordinates
j = (j1, j2) in the E×E epitome. xpi is the observed ap-
pearance feature for the pixel at coordinates i = (i1, i2)
in image patch p. For each image patch, the hidden
variable rp = (rp1 , r

p
2) ∈ {0, . . . , E − 1}2 indicates the

coordinates of the top-left pixel in the epitome patch
from which it was generated. Given rp, xpi is modeled
using a Gaussian distribution:

p(xpi |r
p, η, ν) = N (xpi |ηrp+i, ν

2
rp+i), (1)

where η = {ηj} and ν = {νj} and rp+i = (rp1+i1, r
p
2+

i2).
Epitomes can be viewed as Gaussian mixture mod-

els where the means and variances of different clusters
share a subset of their parameters. For example, the
10 × 10 epitome patch with top-left corner at (1, 1)
shares 180 parameters with the patch at (1, 2). So even
though images are modeled as unordered bags of inde-
pendent D × D patches, spatial relationships are still
captured by shared parameters.

4. Flobject Epitomes

A flobject epitome (FE) consists of an epitome that
is used to model the appearance of patches drawn from
an input image, plus a flobject label distribution map
that is the same size as the epitome. Under this model,
the patches and flow vectors in an image are generated
by first generating a prototype flow vector and its vari-
ance for each possible flobject. Then, each patch of
pixel intensities and corresponding patch of flow vec-
tors are generated by randomly picking a location in
the flobject epitome, generating the patch pixel inten-
sities from the corresponding distributions over pixel
intensities prescribed at that location, generating a
patch of flobject labels from the corresponding distri-
butions over flobject labels prescribed at that location,
and then generating the patch of flow vectors using the
corresponding prototype flow vectors.

The FE model extends the epitome model for flob-
ject analysis by introducing a soft partitioning of the
epitome into T flobject types using a parameter π.
The probability that the epitome feature at coordi-
nate r has flobject label t ∈ {1, . . . , T} is πr,t, where∑T
t=1 πr,t = 1. For each image, the flobject label speci-

fies a distribution over the optic flow for pixels belong-
ing to that flobject. Here, we use Gaussian distribu-
tions, where ~µnt and ~σnt are the mean and std. dev. of



Figure 2: The flobject epitome (FE) graphical model.

the flow vectors for flobject label t in image n. For the
pth patch in the nth image, rn,p ∈ {0, . . . , E − 1}2 are
the coordinates in the epitome from which the patch
is generated. xn,pi and ~un,pi are the appearance feature
and flow vector at coordinates i in patch p of image
n. xn,p = (xn,p1,1 , . . . , x

n,p
D,D) is a patch of appearance

features and ~un,p is a patch of flow vectors.
Since an image patch may lie on boundaries between

objects, we allow different pixels within a single patch
to belong to different flobjects. tn,pi is the flobject label
of the pixel at coordinates i in patch p of image n and
tn,p denotes the entire patch of flobject labels. The
graphical model for the FE model is shown in Fig. 2.

To describe an image, the FE model first generates
the mean ~µt and std. dev. ~σt of the optic flow for each
flobject t ∈ {1, . . . , T} from a uniform prior p(~µ, ~σ).
Each patch is generated as follows, where we drop the
indices n and p for clarity. First, the epitome coor-
dinates r used to explain the patch are drawn from a
multinomial distribution with parameter ρ:

p(r|ρ) = ρr, (2)

where
∑
r ρr = 1. Given r, a flobject label t is gener-

ated for each pixel according to the multinomial distri-
bution π:

p(t|r, π) =
(D,D)∏
i=(1,1)

p(ti|r, π) =
∏
i

πr+i,ti . (3)

Next, a flow vector ~ui for each pixel is drawn from a
Gaussian with mean ~µt and std. dev. ~σt:

p(~u|t, ~µ, ~σ) =
∏
i

p(~ui|ti, ~µ, ~σ) =
∏
i

N (~ui|~µti , ~σ2
ti).

(4)
As before, the pixel feature (e.g., grey level) xi is gen-
erated by sampling from a Gaussian with mean ηr+i

and std. dev. νr+i:

p(x|r, η, ν) =
∏
i

N (xi|ηr+i, ν2r+i). (5)

The probability of r, t, ~u,x for a patch p is

p(xp, ~up, tp, rp|~µ, ~σ, η, ν, π, ρ) =
p(rp|ρ)p(tp|rp, π)p(~up|tp, ~µ, ~σ)p(xp|rp, η, ν). (6)

To write the joint distribution for all patches in an
image, we assume that patches are generated indepen-
dently, given the image-specific flow model, ~µ, ~σ. This
assumption avoids the combinatorics of accounting for
patch overlap during inference.

We use {xn,p, ~un,p, tn,p, rn,p} to denote the collec-
tion of epitome variables for all patches, p, in each im-
age, n, in an entire training set of images. {~µn, ~σn}
denotes the corresponding flow models for each image.
The joint probability of the flow models and epitome
variables is

p({xn,p, ~un,p, tn,p, rn,p}, {~µn, ~σn}|η, ν, π, ρ)

=

N∏
n=1

(
p(~µn, ~σn)

P∏
p=1

(
p(rn,p|ρ)p(tn,p|rn,p, π)·

p(~un,p|tn,p, ~µn, ~σn)p(xn,p|rn,p, η, ν)
))
. (7)

Note that whereas the parameters ρ, π, η and ν are
shared across images, the flow model ~µn, ~σn is differ-
ent for different images. This enables the FE model
to account for the same object having different motion
patterns in different images.

A distinct advantage of the FE model over FLDA
is the ability to model per-pixel flow vectors instead
of modeling the single average flow vector of an en-
tire patch. This feature is important, as many patches,
such as the ones lying on the boundaries of moving ob-
jects, contains multiple flobject labels. Accounting for
per-pixel flow vectors enables the accurate partitioning
of the epitome along the boundaries of such objects.

4.1. Marginalizing over flobject labels

Probabilistic inference involves summing over hid-
den variables, including the flobject labels. One con-
cern might be that the number of configurations of t
in a patch is TD

2

and that this will lead to intractable
summations. However, we designed the flobject epit-
ome described here so that the two terms involving t’s
in the above expressions factorize across pixels. For a
single patch, we have

p(t|r, π)p(~u|t, ~µ, ~σ) =
∏
i

p(ti|r, π)p(~ui|ti, ~µ, ~σ). (8)



Summations of t’s can be moved inside the product
over pixels. In particular, we can reduce the model of
r, t, ~u and x to one where all t’s are marginalized out:

p(x, ~u, r|~µ, ~σ, η, ν, π, ρ) =
∑
t

p(x, ~u, t, r|~µ, ~σ, η, ν, π, ρ)

= p(r|ρ)p(x|r, η, ν)
∏
i

p(~ui|r, π, ~µ, ~σ), (9)

where

p(~ui|r, π, ~µ, ~σ) =
∑
ti

p(ti|r, π)p(~ui|ti, ~µ, ~σ). (10)

This expression can be used for all patches and for all
images to obtain a model with the t’s marginalized out.

4.2. Inferring flobject labels in the presence of flow

It is useful to infer the posterior probability of each
flobject type at each input pixel, given the image and
flow field. This involves summing over r and all t’s but
one:

p(ti|r,x, ~u, ~µ, ~σ, η, ν, π, ρ)

∝
∑
r

∑
t\ti

p(x, ~u, t, r|~µ, ~σ, η, ν, π, ρ), (11)

=
∑
r

(
p(r|ρ)p(x|r, η, ν)p(ti|r, π)p(~ui|ti, ~µ, ~σ)

·
∏
i′ 6=i

p(~ui′ |r, π, ~µ, ~σ)
)
. (12)

It is also useful to infer the label given r:

p(ti|r,x, ~u, ~µ, ~σ, η, ν, π, ρ) ∝ p(x|r, η, ν)

·p(ti|r, π)p(~ui|ti, ~µ, ~σ)
∏
i′ 6=i

p(~ui′ |r, π, ~µ, ~σ). (13)

4.3. Inference for static images

The FE model can be used to analyze a static im-
age, i.e. when the flow vectors are not observed. This
is achieved by analytically marginalizing over the flow
flow vectors ~u and the flow model ~µ, ~σ, which gives

p({xp, tp, rp}|η, ν, π, ρ) =
P∏
p=1

p(xp, tp, rp|η, ν, π, ρ),

(14)

where

p(xp, tp, rp|η, ν, π, ρ) = p(rp|ρ)p(tp|rp, π)p(xp|rp, η, ν).

This expression can be used to infer the label of each
pixel in each patch of a static test image:

p(ti|x, η, ν, π, ρ) ∝
∑
r

p(r|ρ)p(x|r, η, ν)p(ti|r, π). (15)

Thus, the prediction for the flobject label is obtained
by matching the patch to the epitome (summation over
r) and looking up the corresponding distribution over
the flobject label.

5. Learning

To learn a flobject epitome from an observed set
of patches of appearance {xn,p} and flow {~un,p}, we
use an expectation maximization (EM) algorithm that
infers point estimates of the flobject epitome ρ, π, η, ν
and the flow models {~µn, ~σn}, while summing over the
other variables {rn,p, tn,p}.

For the E-step, given the current point estimates of
the flobject epitome parameters ρ, π, η, ν and the flow
models {~µn, ~σn}, for each observed patch, we compute
the posterior probability over epitome positions given
the patch pixel intensities and flows:

γn,pj = p(rn,p = j|xn,p, ~un,p, ~µn, ~σn, η, ν, π, ρ)

=
p(xn,p, ~un,p, rn,p = j|~µ, ~σ, η, ν, π, ρ)∑
j′ p(x

n,p, ~un,p, rn,p = j′|~µ, ~σ, η, ν, π, ρ)
(16)

γn,pj can be thought of as partial assignments of image
patches to epitome positions, analogous to the respon-
sibilities computed during EM inference for Gaussian
mixture models, and will be used in the M step to up-
date point estimates for other unknowns.

For each possible epitome position, we also compute
the pos.terior distribution over flobject labels for each
pixel within the patch,

αn,pj,i,t = p(tn,pi = t|rn,p=j,xn,p, ~un,p, ~µn, ~σn, η, ν, π, ρ),
(17)

as described in detail above.
In the maximization step, we use the posterior prob-

abilities calculated in the E-step to obtain point esti-
mates of the flobject epitome parameters π, η, ν and
the image-specific flow model parameters ~µn, ~σn. The
point estimates are obtained by taking the derivative of
the expected complete likelihood where the expectation
is taken w.r.t. the posterior distribution as computed
in the E-Step. Using Rr = {(r1 − D + 1, r2 − D +
1), . . . , (r1, r2)} to denote the epitome coordinates of
pixels in the patch up and to the left of r, the update
equations are as follows:

πr,t =

∑N
n=1

∑
j∈Rr

∑P
p=1 γ

n,p
j αn,pr,r−j,t∑T

t′=1

∑N
n=1

∑
j∈Rr

∑P
p=1 γ

n,p
j αn,pr,r−j,t′

, (18)

ηr =

∑N
n=1

∑
j∈Rr

∑P
p=1 γ

n,p
j xn,pr−j∑N

n=1

∑
j∈Rr

∑P
p=1 γ

n,p
j

, (19)



(a) (b)

Figure 3: Visualization of the flobject epitomes learnt
from unlabeled images and flow fields in the CityCars
(a) and CityPedestrians (b) datasets. Pixels are shaded
from green to red proportionally to the probabilities of
flobject types 1 and 2 in each case.

ν2r =

∑N
n=1

∑
j∈Rr

∑P
p=1 γ

n,p
j (xn,pr−j − ηr)2∑N

n=1

∑
j∈Rr

∑P
p=1 γ

n,p
j

, (20)

~µnt =

∑
j∈Rr

∑P
p=1 γ

n,p
j αn,pr,r−j,t~u

n,p
r−j∑

j∈Rr

∑P
p=1 γ

n,p
j αn,pr,r−j,t

, (21)

(~σnt )
2 =

∑
j∈Rr

∑P
p=1 γ

n,p
j αn,pr,r−j,t(~u

n,p
r−j − ~µnt )2∑

j∈Rr

∑P
p=1 γ

n,p
j αn,pr,r−j,t

. (22)

6. Experiments

We trained flobject epitomes using the CityCars
and CityPedestrians datasets originally described in
[7]. The CityCars dataset consists of 160 frames of side
views of cars driving in an urban setting, accompanied
by flow fields, 155 static images containing cars (pos-
itives) and 338 images without cars (negatives). The
CityPedestrians dataset consists of 160 frames of side
views of pedestrians walking in an urban setting, ac-
companied by flow fields, 469 static images containing
pedestrians (positives) and 338 images without pedes-
trians (negatives). In both datasets, each frame con-
sists of a 216×384 grayscale image, and a 2×216×384
array containing per-pixel flow vectors computed using
a standard optical flow algorithm [2]. The images were
contrast normalized by subtracting from each pixel the
mean of the 7× 7 window of its neighboring pixels.

For the flobject epitomes, we used an epitome size of
E = 90, a patch size ofD = 7, and T = 2 flobjects. The
flobject epitomes were initialized using the standard
epitome learning algorithm with 60 iterations of EM.
The full FE model was then obtained by applying 60
iterations of EM using the images and flow fields.

6.1. Epitome visualization

Fig. 3 shows the flobject epitomes learnt from the
CityCars and CityPedestrian datasets, where, for each
position in the epitomes, the distribution over the flob-
ject label is color-coded. Pixel (r, c) is shaded from
green to red proportionally to the mixing proportions
of flobject types t ∈ {1, 2} as specified by πr,c,t. The
distinction between the background regions and the car
and pedestrian regions in the epitome are captured by
the soft partitioning of the epitomes. Because each
pixel in the epitome has its own mixing proportions
over the flobject types, the EM algorithm is free to al-
locate as much or as little of the epitome to modeling
each flobject type as necessary.

For both datasets, we see that more of the epitome
is allocated towards modeling the background than the
cars and pedestrians due to the higher variability of
backgrounds. A more rigid model, such as one that
trained a separate epitome for each object type, would
not be flexible in this way. Notice also that different
sizes and orientations of relevant features are captured
in the epitomes, e.g. both large and small wheels and
large and small legs.

6.2. Inferring flobject labels from static images

We used the flobject epitome with the flow com-
ponent integrated out to analyze static test images as
described above. Fig. 4a shows the posterior over flob-
ject labels computed for several test images from the
CityCars dataset. Pixels are shaded from green to red
proportionally to the probability of them being classi-
fied as flobject type 1 or 2.

Keeping in mind that the only input during training
is images and flow fields and that the only input dur-
ing testing is static images, these results indicate that
the flobject epitome has successfully learned appear-
ance patterns that separate classes of motion, in this
case cars versus streets, buildings, trees, etc. In addi-
tion to successfully labeling cars with a wide range in
scale without using a multi-resolution search, the flob-
ject epitome can correctly label multiple cars appear-
ing in the same image. False positives include curved
structures and long horizontal ribbons of dark above
light, which correspond to car roofs and shadows cast
by cars, respectively. Also, pedestrians are sometimes
detected, possibly because some moving pedestrians
were included in the training data.

We also examined labelings produced by the CityPe-
destrians flobject epitome, which are shown in Fig. 4b.
Considering the wide variation in pose, articulation,
reflectance and scale of pedestrians, the flobject epit-
ome is quite successful at labeling them. The legs are
particularly well-labeled, whereas the torsos are less
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Figure 4: Static test images were colored using the flobject label posteriors obtained from a flobject epitome trained
on (a) CityCars and (b) CityPedestrians data that included images and flow, but not labels. Pixels are shaded
from green to red proportionally to the probability of flobject types 1 and 2.

well-labeled. Notable false positives include vertical
structures such as parking posts, trees and pylons, but
these detections are significantly weaker than those of
the pedestrians.

In the next two sections, we use the posterior prob-
abilities of flobject labels for object classification and
localization.

6.3. Image classification

Here, we study the use of flobject epitomes for
classification using the CityCars and CityPedestrians
datasets, which were shown to be difficult for classifi-
cation because the backgrounds are quite similar in all
images [7].

To classify static images, we computed HOG [3] de-
scriptors from image regions whose pixels exceeded a
threshold applied to the flobject label posterior proba-
bilities. HOG features were computed for every 16×16
patch in a 6× 6 grid and each was mapped to a code-
word ranging from 1 to V using a codebook that was
obtained using k-means clustering applied to training
data. To determine which flobject type each HOG
patch is associated with, the posterior flobject label
probabilities for all pixels in the HOG patch were av-
eraged together and compared to a threshold τ . We
created one normalized histogram of HOG codewords
for each flobject type, which we refer to as a flobject
descriptor. Since we set T = 2 for both datasets, there
are two flobject descriptors for each image. The best
one can be selected using cross validation, but here we
report results for both descriptors so they can be com-
pared.

For both the CityCars and CityPedestrians dataset,
half the static images are reserved for supervised train-
ing for binary classification, and the other half is re-
served for testing. As in [7], we ensure that the same
car or pedestrian is never present in both the training

Dataset
CityCars CityPedestrians

D
es
cr
ip
to
r

HOG 65% (5%) 55% (1%)
SPHOG 65% (7%) 53% (1%)
Gist 70% (5%) 51% (3%)
LDA 64% (5%) 55% (1%)
FLDA 82% (4%) 55% (1%)

FE Type 1 89% (2%) 50% (3%)
FE Type 2 97% (1%) 69% (2%)

Table 1: Comparison of classification accuracy on the
CityCars and CityPedestrians datasets. Std. dev.
computed using the bootstrap.

Descriptor Classification Accuracy
HOG 68% (2%)

FE Type 2 77% (2%)

Table 2: Classification performance on manually la-
beled bounding boxes from CityPedestrians.

and test sets. Training and testing was repeated 20
times using the bootstrap to estimate confidence inter-
vals. We ensure an equal number of positive and nega-
tive testing images and thus random guessing achieves
50%. We used τ = 0.35 for the CityCars dataset, and
τ = 0.4 for the CityPedestrians dataset.

Table 1 shows the classification results using the two
different flobject descriptors as input to an L1 nearest
neighbor classifier. We compare our classification re-
sults with the original flobject analysis (FLDA) method
[7], a bag-of-words classifier with and without a spatial
pyramid [5], and a Gist-based [9] classifier.

For both datasets, our method achieves a signifi-
cantly higher classification rate than other methods.
For both CityCars and CityPedestrians, flobject label
1 corresponds to the background while flobject label
2 corresponds to cars or pedestrians. Therefore, it



is perhaps not surprising that the type 2 descriptors
achieve higher accuracy, since those descriptors were
constructed using HOG features extracted from car
and pedestrian regions. However, it is interesting the
for CityCars, the type 1 descriptor, comprised from
background HOG features, still achieves a better ac-
curacy than other methods. Interestingly, the FE de-
scriptors work well for both datasets, whereas FLDA
performed similarly to other methods on the CityPe-
destrians dataset.

One point we emphasize is that the flow epitome
model is trained on whole images with motion cues,
and we classify whole static images. This is in contrast
to sliding window techniques which require bounding
box labels at training time. However, if provided with
bounding boxes at training time, it is meaningful to ask
whether the FE descriptors can still improve upon clas-
sification rates. Table 2 compares classification accura-
cies of HOG and FE descriptors extracted from hand
labeled bounding boxes from a subset of the CityPe-
destrians dataset (430 positive and 430 negative). We
see that the additional bounding box labels improve the
performance of both descriptors but the FE descriptors
still perform better than the HOG descriptors (77% vs.
68%). These results make us hopeful that FE descrip-
tors can be combined with sliding window techniques
for object detection applications.

6.4. Object localization

Here, we demonstrate that our method can also be
used to localize objects by generating crude object-
based segmentations. State of the art methods are opti-
mized to use a sliding window approach to consider ev-
ery possible scale, aspect ratio and location of a bound-
ing box. Our goal here is not to compete with those
methods, but to demonstrate that without explicitly
optimizing our method for this task, it nonetheless pro-
vides quite sensible localization results. Our approach
makes use of the flobject label posteriors discussed
above and shown in Fig. 4, but we use a graph labeling
method to detect regions with regularized boundaries.
We represent an image using a pixel grid (V,E) and an
edge between every pixel and its four immediate neigh-
bours. The goal is to assign to each node an integer
labeling, li ∈ {1, . . . , T}, that minimizes the sum of
unary and pairwise costs, C(l) = α

∑
i∈V C(li) + (1 −

α)
∑
{(i,i′)∈E C(li, li′). We use the unary costs, C(li),

to persuade the segmentation to heed the object type
type posteriors: C(li = t) = βt(1 − p(ti|x), where βt
is a flobject type-specific weighting and

∑T
t=1 βt = 1.

The pair-wise costs, C(li, li′), are used to persuade the
segmentation to follow the intensity contours in the im-
age: C(li, li′) = e−θ(xi−xi′ )

2

if li 6= li′ and 0 otherwise.

C(li, li′) can be interpreted as the likelihood that pixels
xi and xi′ are of the same object type. If they are of
the same type, then there is a cost associated with la-
beling them differently. θ controls the soft threshold at
which pixels are considered to be different object types.
Large θ indicates that two pixels are of the same type
only if they have exactly the same pixel intensities. A
small θ indicates that two pixels are of the same type
if they have similar pixel intensities. α ∈ [0, 1] is the
weighting that controls the influence from the intensity
contours relative to the type posteriors.

Fig. 5 shows the localization results for test im-
ages from the CityCars dataset (β = [0.6 0.4], α =
0.03, θ = 0.01) and CityPedestrians dataset (β =
[0.68 0.32], α = 0.003, θ = 0.01). For the most part,
the segmentations hug the desired objects, and errors
are mostly accounted for by the types of errors in the
flobject label posteriors discussed above. Also shown
in Fig. 5 are the localization results obtained using the
same procedure applied to the original flobject analy-
sis (FLDA) method [7]. Because that method does not
account for spatial coherence, it does not produce co-
herent segmentations. These results demonstrate that
the use of an epitome significantly helps our method
produce spatially coherent analyses. For reference, we
also show results obtained by normalized cuts, which is
not expected to perform well because it is not trained
to identify objects.

7. Conclusions

We introduced a way of performing flobject analysis
using an epitome that is accompanied by a epitome-
sized distribution over object labels and image-specific
flow models. The flobject epitome (FE) model has
distinct advantages over the original flobject analysis
model, including that it accounts for spatial coherence
in appearance features, it is easily interpretable, and
its learning algorithm does not require computation-
ally expensive MCMC techniques for inference. Re-
sults on the CityCars and CityPedestrians datasets
demonstrate that our method performs better than
other techniques on the task of image classification,
and that our method can be used to localize objects in
images without applying a sliding window approach.
While we showed that the FE model can perform well
on a small number of object classes, the ultimate goal
of flobject analysis is to operate at the scale of many
object classes. We are currently exploring techniques
that would enable scaling the model to many object
classes. This is not trivial because of the problem of
the combinatorics involved in unsupervised learning of
many object classes and corresponding subclasses cor-
responding to object parts.



(a) (b)

(c) (d)

Figure 5: Object localization results for the flobject epitome applied to the (a) CityCars and (b) CityPedestrians
datasets. For comparison, segmentations obtained using (c) normalized cuts and (d) the original flobject analysis
(FLDA) method are shown. Unlike our method, FLDA does not account for spatial coherence.
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