
Assignment 6: Tagged Primitives Optimization

Patrick S. Li

October 15, 2015

1 Motivation

From your previous assignments, you will have noticed that simple integers
comprise the majority of memory that is allocated during execution of a
program. This is especially shameful when we consider how much memory
is actually wasted on a value that should theoretically only require 32 bits.
To represent an integer, we use a 64-bit pointer to point to a 128-bit heap
allocated structure, where the first 64-bits is used for the tag word, and the
actual integral value is stored in the latter 32-bits of the second word. Thus
in total, we are occupying six times more memory than we should. Even
worse than the memory footprint is the tremendous strain this places upon
the garbage collector.

In this assignment, you will implement a common optimization known as
“tagged primitives” that will reduce the memory footprint of an integer to
a single 64-bit word, and also eliminate the strain placed upon the garbage
collector due to primitive values.

The algorithm is motivated by asking why can’t we directly represent our
integer values using their bit representation? Why do we have to represent
them through an extra pointer indirection to a heap allocated object? The
answer lies in the fact that Feeny is a dynamically typed language, and thus
for any given value, it needs to be able to dynamically determine what type
of object it is. Is it an integer, or an array, or an object of some class?

Currently this operation is simple. Every value is represented using a pointer
to a heap allocated structure, and the first word in that structure is an

1



integer describing the type of the object. Thus the only reason why we heap
allocate all of our values is to support this core operation: given a value,
dynamically determine its type. If we directly represented integers using
their bit representation, then there would be no way to distinguish between
an integer and a pointer to an object.

We will see that there is a much cheaper representation of values that still
preserves this core operation.

2 Algorithm

The algorithm follows from the simple observation that all of our heap allo-
cated structures have sizes that are integer multiples of 64 bits. Thus if our
heap starts on a 64 bit aligned boundary (which malloc already guarantees),
then any pointer to a heap structure will necessarily end with the bits 000
in its least significant bits.

In this optimization, we will take advantage of these three bits of spare
memory, and use it to partially store the type information of a value. We
are only partially storing the type information because there may be many
classes defined in a Feeny program, and three bits is not enough to uniquely
encode each.

Here is the strategy we will use. We will represent values of the primitive
type Null as the value 2. We will represent Integer values as 8v, where v is
the numerical value of the integer. And finally we will represent objects as
p + 1, where p is a 64-bit pointer that points to a heap-allocated structure.
This representation is called the “tagged” representation.

3 Algorithm Details

The following things need to be updated in your virtual machine:

1. Creation of Literals: Literal objects are now no longer allocated on
the heap. Thus update the code to directly represent them using the
tagged representations given above.

2



2. Dynamic Dispatch: Instructions which require a dynamic dispatch
upon the type of an object, such as CALL SLOT, are now more com-
plicated. Determing the type of an object is now a two step process.
First determine its partial type by checking the least significant three
bits of the value. If it is an object, then retrieve its tag word from the
head of its heap-allocated structure and determine its type from the
tag word.

3. Branches: The predicate test for branches have to be changed to reflect
the new representation of the Null object.

4. Arithmetic Operations: The arithmetic operations need to be changed
to reflect the new representations of the integers. See section 4 for
details.

5. Load/Store Operations: Load and store operations to slots within an
object need to be changed to reflect the 1-byte bias inherent in the
value representation.

6. Garbage Collector: The get_post_gc_ptr function has to be changed
to reflect the new representation of objects. If the object is a primitive
type then its post garbage-collection value remains the same, and can
be returned directly. No broken heart needs to be set in this case either.

4 Arithmetic Details

The naive method of implementing the arithmetic operators is to convert the
integers into their standard bit representations, perform the operation, and
then convert the result back into its tagged representation.

However, we have chosen a particularly clever value representation that per-
mits us to perform arithmetic operations directly on the tagged representa-
tions, thus eliding the required conversion operations.

Here is an example derivation of the addition operation on tagged representa-
tions. Notationally we will use f(x) to represent the tagged representation of
the integer value x. As mentioned in section 2, our representation of integers
is:

f(x) = 8x

3



Our goal, for the addition operation, is to determine the value of f(x + y)
given the tagged arguments f(x) and f(y). It is straightforward to see that

f(x + y) = 8(x + y) = 8x + 8y = f(x) + f(y)

. Thus we can perform addition simply by directly adding the tagged repre-
sentations! Derive the rest of the arithmetic operators in a similar fashion.

5 Harness Infrastructure

You will be expected to execute Feeny programs from a given AST, and will
be using the harness from the bytecode compiler assignment.

The function

Program* compile (ScopeStmt* stmt)

in the file src/compiler.c will be the entry point of your bytecode compiler,
and will be called with the AST datastructure.

As in the last assignment

void interpret_bc (Program* p)

in the file src/vm.c will be the entry point of your bytecode interpreter and
will be called with the result of your bytecode compiler.

5.1 Test Harness

The provided bash script run_tests will parse the test programs in the test
directory into ASTs and run your bytecode compiler and interpreter on the
result. To run it, type:

./ run_tests compiler.c vm.c

at the terminal. For each test program, e.g. cplx.feeny, the output of
your bytecode interpreter will be stored in output/cplx.out. The default
implementations of compile and interpret_bc do nothing except print out
the AST and bytecode IR respectively.

4



Please ensure that your implementation can be driven correctly by
run_tests. Your assignment will be graded using this script.

5.2 Compiling and Running Manually

To compile and run your implementation manually, you may also follow these
steps. Compile your interpreter by typing:

gcc -std=c99 src/cfeeny.c src/utils.c src/ast.c

src/bytecode.c src/compiler.c src/vm.c

-o cfeeny -Wno -int -to -void -pointer -cast

at the terminal. This will create the cfeeny executable.

Next, you have to run the supplied parser which will read in the source text
for a Feeny program and dump it to a binary AST file.

./ parser -i tests/cplx.feeny -oast output/cplx.ast

Finally, call the cfeeny executable with the binary AST file as its argument
to start the interpreter.

./ cfeeny output/cplx.ast

6 Report

Implement your bytecode compiler and interpreter (with GC and tagged
primitives) and place it in the src directory, naming it compiler_xx.c and
vm_xx.c, where xx is replaced with your initials. Then ensure that it can be
properly driven by the testing harness by typing:

./ run_tests compiler_xx.c vm_xx.c

Include your implementation of Towers of Hanoi, Stacks, and More Towers of
Hanoi from exercise 1, and ensure that your compiler and interpreter works
correctly for those as well.

1. (80 points) Compiler Statistics: Create a table in your report that
measure and calculate the following statistics for the test programs:
bsearch.feeny, inheritance.feeny, cplx.feeny, lists.feeny,

5



vector.feeny, fibonacci.feeny, sudoku.feeny, sudoku2.feeny,
hanoi.feeny, stacks.feeny, morehanoi.feeny.

(a) Total amount of time (in milliseconds) for interpret_bc to run
and return.

(b) Total amount of time (in milliseconds) spent in the
garbage_collector function.

(c) Total number of bytes allocated by halloc.

(d) Reduction in total number of bytes allocated relative to before
implementing the tagged primitives optimization (new/old).

(e) Reduction in total time spent in the garbage collector rela-
tive to before implementing the tagged primitives optimization
(new/old).

(f) Reduction in total time spent in interpret_bc relative to before
implementing the tagged primitives optimization (new/old).

2. (10 points) Multiply Operation: Feeny’s specification currently man-
dates 32 bit integers, but you may have noticed that on our 64 bit
system, we can easily support up to 61 bit integers. Suppose we make
this extension to the language. In the implementation of the multiply
operator you might have noticed that you have two implementation
choices:

f(x · y) = f(x) · f−1(f(y))

or

f(x · y) = f−1(f(x) · f(y))

. Which one is preferable and why?

3. (10 points) Comparison Operations: Suppose I give you a function
g(a op b) where a and b are integers, and op can be any of the compar-
ison operators. g returns 1 when the predicate is true, and returns 0
otherwise. How can you utilize this function to efficiently compute the
result of a comparison operation on tagged representations? (While
not easily accessible from C, g effectively models a conditional bit-set
assembly instruction available on many processors.)

6



7 Deliverables

Students may work in pairs or alone. Please submit your answers to sec-
tion 6 as report XX.pdf, and your programs as compiler XX.c, vm XX.c,
hanoi XX.feeny, stacks XX.feeny, and morehanoi XX.feeny. Zip all files to-
gether in a file called assign5 XX.zip. Replace XX above with your initials.
Mail the zip file to patrickli.2001@gmail.com with [Feeny6] in the sub-
ject header.

7


