Assignment 5: Writing a Garbage Collector for
Feeny

Patrick S. Li

October 2, 2015

1 Introduction

In this assignment, you will implement a compacting precise garbage collector
for automatically reclaming storage during the execution of Feeny programs.
You will be implementing a stop-and-copy or scavenging garbage collector on
top of your bytecode interpreter. This is the last step required before you
have a correct (though slow) Feeny implementation.

2 Harness Infrastructure

You will be expected to execute Feeny programs from a given AST, and will
be using the harness from the bytecode compiler assignment.

The function

Program* compile (ScopeStmt* stmt)

in the file src/compiler.c will be the entry point of your bytecode compiler,
and will be called with the AST datastructure.

As in the last assignment

void interpret_bc (Program* p)

in the file src/vm. c will be the entry point of your bytecode interpreter and
will be called with the result of your bytecode compiler.

2.1 Test Harness

The provided bash script run_tests will parse the test programs in the test
directory into ASTs and run your bytecode compiler and interpreter on the
result. To run it, type:

./run_tests compiler.c vm.c

at the terminal. For each test program, e.g. cplx.feeny, the output of
your bytecode interpreter will be stored in output/cplx.out. The default
implementations of compile and interpret_bc do nothing except print out
the AST and bytecode IR respectively.

Please ensure that your implementation can be driven correctly by
run_tests. Your assignment will be graded using this script.

2.2 Compiling and Running Manually

To compile and run your implementation manually, you may also follow these
steps. Compile your interpreter by typing:

gcc -std=c99 src/cfeeny.c src/utils.c src/ast.c
src/bytecode.c src/compiler.c src/vm.c
-o cfeeny -Wno-int-to-void-pointer-cast

at the terminal. This will create the cfeeny executable.

Next, you have to run the supplied parser which will read in the source text
for a Feeny program and dump it to a binary AST file.

./parser -i tests/cplx.feeny -oast output/cplx.ast

Finally, call the cfeeny executable with the binary AST file as its argument
to start the interpreter.

./cfeeny output/cplx.ast

3 Object Layout

The simplicity of the garbage collector depends greatly upon the representa-
tion of objects and of your machine state. The first step is to refactor your
bytecode interpreter to ensure the following object layout:

3.1 Heap Object Layout

INT | value

NULL | space

ARRAY | length | slots...

CLASS | parent | varslots...

Figure 1: Heap Object Layout

An integer is represented by a 128-bit (or 2-word) piece of memory. The first
word is a unique integer, IN'T, that indicates that the object is an integer.
The second word contains the value of the integer.

The null object is represented by a 128-bit (or 2-word) piece of memory. The
first word is a unique integer, NULL, that indicates that the object is the
null object. The second word is reserved for use later. Do not represent the
null object using the zero-pointer. The layout described above is needlessly
general, but we will optimize the representation in a later assignment.

The array object is represented by a unique integer, ARRAY, followed by a
word for storing the length of the array, followed by a word per slot in the
array.

Objects are represented with an integer representing the class of the object,
CLASS, followed by a word for storing the parent of the object, followed by

a word for each variable slot in the object. There is a unique CLASS integer
for each declared class in the Feeny program. Note that there are no words
allocated on the heap for the method slots of the object!

3.2 Global Variable Layout

Store the global variables in a single contiguous array with one word dedi-
cated to each global variable:

Figure 2: Global Variable Layout

Note that there are no words allocated for global functions, only global vari-
ables.

3.3 Local Frame Layout

Allocate a single array in which to consecutively store all the local frames.
Each frame stores a word that contains the starting index of the parent
frame, a word for storing the return address of the caller function, followed
by a word for each slot in the frame.

parent | return | slots... parent | return | slots ...

Figure 3: Frame Layout

3.4 Operand Stack Layout

Allocate a single array in which to store the values in the operand stack.
Later, you may optimize your implementation to store both the operand

4

stack and the local frames in the same array, but keep the two separate for
now.

4 Implementation Guide

4.1 Writing a Custom Allocator

Allocate a 1IMB piece of memory for serving as our custom heap for the Feeny
VM. Write a function:

void* halloc (int nbytes)

that returns the next piece of memory of nbytes bytes. Do this by keeping
track of how full the heap is, and incrementing this count each time halloc
is called.

If a call to halloc will exceed the capacity of the heap, then write and call
the function:

void* garbage_collector ()

to clean up the heap before attempting the allocation. If there is still not
enough space to allocate the object then print a message to signal that the
system is out of memory and quit the program.

We will write the garbage_collector function in parts through this assign-
ment. For now, just quit the program, and test your VM to ensure that
programs work with the custom allocator until the point where the heap is
exhausted. It may be useful to ensure that printf statements always flush to
see the progress of the program before termination.

4.2 Scanning the Root Set

The root set of a Feeny program consists of the global variables, the stack of
local frames, and the operand stack. Write a function:

void scan_root_set ()

that iterates through each variable in the root set and prints out its 64-bit
address. Ensure that each address points to a region within the allocated
heap. Modify garbage_collector to call scan_root_set before quitting
the program.

[terating through the global variables and the operand stack is straightfor-
ward. Finding all the variables in the local frames is trickier and involves
writing a stack walker. Starting from the current frame pointer, follow the
parent frame pointers to print out all the slots in the stack frames.

4.3 Copying to Free Space

At the start of garbage_collector, allocate another 1MB piece of memory
for the free space, the region to which we will copy all the currently live
objects. Use a pointer to keep track of how full the free space is.

Write a function:

void* get_post_gc_ptr (void* obj)

that, given a pointer to a heap-allocated object, returns the new pointer to
the object after garbage collection.

get_post_gc_ptr needs to do three things:

1. The first time get_post_gc_ptr is called on an object it (shallow)
copies the object to the free space, and returns the pointer to the new
object in free space. You can determine the size of the object to be
copied from the unique integer at the head of every object.

2. Before returning the new pointer, record this new pointer as the for-
warding address for the old object. Do this by overwriting the contents
of the old object with a “broken heart” object.

B.HEART | forward

Figure 4: Broken Heart Layout

B.HEART is a unique integer indicating that it is a broken heart, and
forward is the post GC pointer for the object. This overwriting is
always safe to do because you've allocated a minimum of two words for
every object type.

3. Subsequent calls to get_post_gc_ptr for an already copied object must
return the cached forwarding address for the object. You can deter-
mine if an object has already been copied by checking whether it has
a B.HEART tag.

The term “broken heart” was coined by David Cressey, who wrote a garbage
collector for MDL, an early dialect of Lisp. (I remember the story was that
the integer tag used for the forwarding object shows up as a broken heart
symbol when printed to the console. But I can no longer find the source of
this story.)

4.4 Copying the Roots

Now that you have get_post_gc_ptr written, you can use it to copy the
root set of the Feeny VM. Modify your implementation of scan_root_set so
that instead of simply printing out each variable in the root set, it replaces
each variable with its post GC pointer.

4.5 Scanning the Heap

After copying the root set, all the objects directly pointed to by the root
set will have been copied into the free space. However, the internal fields in
those objects still point to objects in the old heap.

In garbage_collector, after the call to scan_root_set, iterate through the
objects in the free space from beginning to end, replacing every internal field
in each object with its post GC pointer. Use the integer tags at the beginning
of every object to determine the size of the object, and the location of all of
its internal fields.

You will notice that as you iterate through the free space, calls to
get_post_gc_ptr will result in more objects being copied to the free space.

Garbage collection will end when you finally reach the last object in the free
space, and it has no uncopied objects in its fields.

This step completes the garbage collector. Delete the memory used for the old
heap and return from garbage_collector to continue running the program.

4.6 Stress Testing the Collector

The following stress test ensures that your VM is correctly written so as to
allow the garbage collector to be safely runnable whenever halloc is called.

Currently halloc only calls the garbage collector when it exceeds the capac-
ity of the current heap. Modify halloc to always call the garbage collector
no matter the occupancy of the current heap, and ensure that your programs
still run (albeit excruciatingly slowly) to completion.

4.7 Flipping Heap space with Free space

There is currently an unnecessary allocation of free space and deletion of
heap space on every call to the garbage collector.

Modify the garbage collector so that instead of deleting the memory used for
the old heap after collection, use the memory for the free space the next time
the collector is called.

5 Report

Implement your bytecode compiler and interpreter (with GC) and place it
in the src directory, naming it compiler_xx.c and vm_xx.c, where xx is
replaced with your initials. Then ensure that it can be properly driven by
the testing harness by typing:

./run_tests compiler_xx.c Vm_XX.C

Include your implementation of Towers of Hanoi, Stacks, and More Towers of
Hanoi from exercise 1, and ensure that your compiler and interpreter works
correctly for those as well.

1. (60 points) Compiler Statistics: Create a table in your report that
measure and calculate the following statistics for the test programs:
bsearch.feeny, inheritance.feeny, cplx.feeny, lists.feeny,
vector.feeny, fibonacci.feeny, sudoku.feeny, sudoku2.feeny,
hanoi.feeny, stacks.feeny, morehanoi.feeny.

(a) Total amount of time (in milliseconds) for interpret_bc to run
and return.

(b) Total amount of time (in milliseconds) spent in the
garbage_collector function.

(c¢) Total number of bytes allocated by halloc.
(d) Total number of bytes allocated by halloc for integer objects.

2. (10 points) Host Language Interactions: One of the hardest aspects
of programming a garbage collector is correctly handling the interaction
with the host language whose variables are not visible to our root set
calculator.

Point out the error in the following pseudocode for implementing the
ARRAY bytecode instruction.
case ARRAY_INS

val init = pop from operand stack

val length = pop from operand stack

val array = halloc(8 + 8 + 8 * length.value)

//Tag + Len + Slots

array [0] = ARRAY_TAG

array [1] = length.value

array[2 to 2 + length.value] = init

push array to operand stack

3. (5 points) Bytecode vs AST Interpreter: Imagine writing a garbage
collector for our AST interpreter for Feeny. Would it be more or less
difficult than writing the garbage collector for our bytecode interpreter?
What specific aspects make it more or less difficult?

4. (5 points) Long Living Objects: Suppose for one of our programs we
allocate a very large array at the beginning of the program, and read
and write from it for the duration of the program. Comment on the
negative performance characteristics of our current garbage collector
on such a program.

6

. (5 points) Primitive Arrays: Suppose we are writing a program deal-

ing with heavily numerical data which operates primarily on large ar-
rays containing integers through the duration of the program. Com-
ment on the negative performance characteristics of our current garbage
collector on such a program.

. (5 points) Linked Lists: Suppose we are writing a program that makes

heavy use of linked lists. The program operates primarily on many
long linked lists of integers. Comment on the negative performance
characteristics of our current garbage collector on such a program.

. (5 points) Performance Complexity: Comment informally on the

performance complexity of our garbage collector. What aspects of the
program is it dependent on?

. (5 points) Foreign Function Interface: Suppose we add the ability

to Feeny to call functions defined in other languages (ie. C), to which
we will pass out pointers to Feeny objects. Compared to an FFI for a
non-garbage collected language, describe the additional complications
that must be handled correctly when designing an FFI for Feeny.

Deliverables

Students may work in pairs or alone. Please submit your answers to sec-
tion 5 as report. XX.pdf, and your programs as compiler_XX.c, vm_XX.c,
hanoi_XX.feeny, stacks_XX.feeny, and morehanoi_XX.feeny. Zip all files to-
gether in a file called assignd_XX.zip. Replace XX above with your initials.
Mail the zip file to patrickli.2001@gmail.com with [Feeny5] in the sub-
ject header.

10

