
Assignment 7: Dynamic Compilation

Patrick S. Li

October 22, 2015

1 Introduction

One of the biggest sources of inefficiency in our bytecode interpreter is the
overhead of executing all the instructions that comprise the interpreter as
compared to directly executing the instructions that perform the bytecode
operation. In this assignment, we will avoid this overhead by compiling the
Feeny bytecode directly into the assembly instructions and then asking the
processor to execute the generated instructions. Step-by-step, we will go
through the process of developing the necessary techniques for writing a JIT,
and eventually finish with a just-in-time compiler for Feeny.

2 Background

It is assumed in this assignment that you either know the basics of x86
assembly programming or can easily find the appropriate information. Here
are all the instructions that I use in my own implementation of Feeny:

• movq

• call

• ret

• leaq

• shrq

1

• shlq

• subq

• addq

• cmpq

• jle

• jl

• je

For the purposes of debugging, you will also need basic familiarity with inter-
acting with assembly code using GDB. Good tutorials are available online.

3 What is a JIT?

Here we will get to the essence of a just-in-time compiler by writing a simple
program that generates and executes instructions.

Start a new C program, and include the standard libraries for handling in-
put/output, strings, and manual memory management. Save this file as
jit1.c.

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#include <sys/mman.h>

In our main function, the first thing we need to do is allocate memory for
holding the generated instructions. Because we will be executing the instruc-
tions this memory requires execute priviledges, thus malloc will not suffice,
and we have to use mmap instead. The following call allocates 1024 bytes of
executable memory.

char* code = mmap(0, 1024,

PROT_READ|PROT_WRITE|PROT_EXEC ,

MAP_PRIVATE|MAP_ANON , -1, 0);

Next we generate the instructions we want to execute in this memory.

2

code [0] = 0x48;

code [1] = 0xc7;

code [2] = 0xc0;

code [3] = 0x2a;

code [4] = 0x00;

code [5] = 0x00;

code [6] = 0x00;

code [7] = 0xc3;

The above code represents a function that takes no arguments and returns
an integer. To execute this generated function, we cast our code pointer to
a function pointer and then call it.

int (*f)() = (void*)code;

printf (" Returned %d\n", f());

This program will print :

Returned 42

when we compile and run it in the terminal.

This simple program makes up the essence of a just-in-time compiler. It
is no more complicated than generating the binary sequences that comprise
a program at runtime and then executing the generated instructions. The
difficult (and interesting) part, of course, is in knowing what to generate.

3.1 Exercises

1. (3 points) Change the line above from

code [3] = 0x2a;

to

code [3] = 0x3f;

What does the program do now?

4 Binary Encoding of Instructions

The binary data given above corresponds to the x86 assembly instructions

3

movq $42 , %rax

ret

which is a simple function that simply returns the integer 42. Theoreti-
cally, this information is completely available online, for free, in the Intel
x86 reference manuals, but diphering those manuals requires a manual in
itself. Instead, we will take advantage of gcc’s built-in assembler to translate
instructions to binary for us.

Start a new file called jit1.s and put the following in it:

.globl return42

return42 :

movq $42 , %rax

ret

Now compile your program using

gcc jit1.c jit1.s -o jit1

and launch gdb using

gdb jit1

Using the command x/2i return42 we can print out the contents of the
memory location designated by label return42, formatted as instructions.
Your system should print out something similar to:

0x400701 <_return42 >: mov $0x2a ,%rax
0x400708 <_return42 +7>: retq

To print out the binary encoding of the instructions, we can use the command
x/8b return42 which prints out something similar to:

0x400701 <_return42 >: 0x48 0xc7 0xc0 0x2a 0x00 0x00 0x00 0xc3

which exactly corresponds to what we stored in our code buffer.

4.1 Exercises

1. (3 points) Generate the instructions required to implement a function
that takes a single integer argument, x, and returns x+42. Detail here
the assembly instructions you used, and their binary encoding. See
section 5 for details on the SystemV calling convention.

4

2. (3 points) Generate the instructions required to implement a function
that takes two integer arguments, x and y, and returns x − y. Detail
here the assembly instructions you used, and their binary encoding.

5 SystemV Calling Conventions

The full System V calling conventions are complicated and here we will ex-
plain only the subset of the full convention that we will need for writing our
JIT.

x86-64 has 16 general purpose registers: %rax, %rbx, %rcx, %rdx, %rsi, %rdi,
%rbp, %rsp, %r8, %r9, %r10, %r11, %r12, %r13, %r14, %r15.

When calling a function, the first six arguments are stored in registers:

%rdi: Argument 1

%rsi: Argument 2

%rdx: Argument 3

%rcx: Argument 4

%r8: Argument 5

%r9: Argument 6

and the result has to be stored in register %rax. The following registers:
%rsp, %rbx, %rbp, %r12, %r13, %r14, %r15 are callee saved registers, which
means that if you use these registers, it is your responsibility to restore them
to their original values before returning from your function.

6 Simple JIT

As is evident now, the most time consuming part of writing a full-featured
JIT is the assembler that encodes instructions into the specific binary format
needed by the processor. We will be using a different technique that avoids
having to do this.

Section 4 shows that we can directly write our assembly instructions in a
separate file and have gcc translate it into binary for us. The translated code
is included as part of the compiled program. Therefore, there is no need
for us to figure out the details of the binary encoding for us to generate the

5

instructions. We can simply copy the encoded instructions from where its
stored in the compiled program to our allocated executable memory.

Modify jit1.s to mark the end of the return42 snippet.

.globl return42

.globl return42_end

return42 :

movq $42 , %rax

ret

return42_end :

Now in jit1.c, add the following declarations to tell the C compiler that
there exists some binary data with the following labels.

extern char return42 [];

extern char return42_end [];

Thus the binary encodings for the instructions that comprise the return42

instruction starts at address return42 and ends at address return42_end.

Now instead of populating our code array manually:

code [0] = 0x48;

code [1] = 0xc7;

code [2] = 0xc0;

code [3] = 0x2a;

code [4] = 0x00;

code [5] = 0x00;

code [6] = 0x00;

code [7] = 0xc3;

We will simply copy the data over.

memcpy(code , return42 , return42_end - return42);

Compile and run the program and ensure that your JIT still works.

Thus, with this technique we can directly write assembly snippets in text form
and then rely upon our C compiler to translate them to their appropriate
binary encodings. This saves us the work of having to write an assembler
ourselves. Note that almost all of the optimizations possible on a modern
JIT are still possible using this technique. The only optimization that really
necessitates a full assembler is register allocation, which is beyond the scope
of this course.

6

7 Code Holes

With the technique developed in section 6 we wrote a snippet of assembly
code that returns the integer 42 to the caller, and we can copy this snippet
wherever needed in the construction of our JIT.

However, at some point, we will likely have to return integers other than 42.
We could write a separate assembly snippet for each possible value that we
want to return, but this is too tedious of a solution to consider. Instead,
we will write our assembly snippets using a placeholder value first, and then
later fill it in with our value of choice.

Modify jit1.s to use the placeholder value 0xcafebabecafebabe in the
return snippet. You may substitute cafebabe with cafed00d to suit your
individual preferences.

.globl return_ins

.globl return_ins_end

return_ins :

movq $0xcafebabecafebabe , %rax

ret

return_ins_end :

Now modify jit1.c to generate instructions for returning 42 to the caller by
copying over the binary data comprising return_ins and replacing the first
occurrence of 0xcafebabecafebabe with the number 42.

Note that this technique makes two relatively strong assumptions. The first is
that the binary pattern 0xcafebabecafebabe does not appear anywhere else
in the encoded instructions except in our placeholder location. In the unlikely
event that this is not true, we can simply choose a different placeholder
value. The second assumption is that the literal 0xcafebabecafebabe is
stored contiguously in the encoded instruction stream. This is true for the
x86 processor, but not for some others. For those processors, a more robust
replacement mechanism will be necessary.

8 Position Independent Code

Modify jit1.c to declare a global variable called counter.

7

long counter = 0;

Now modify jit1.s to include the following snippet for incrementing the
value of counter.

.globl inc_counter_ins

.globl inc_counter_ins_end

inc_counter_ins :

movq counter (%rip), %rax

addq $1 , %rax

movq %rax , counter (%rip)

ret

inc_counter_ins_end :

Verify that the inc_counter_ins assembly code is correct by casting it to a
function pointer and calling it.

Now, try and copy the instructions to our code buffer and execute it from
there. If we are lucky, our system will crash with a segmentation fault. If not,
the program will continue running with some corrupted value in memory.

The reason that the same code does not work when copied to a different
location is because modern systems use offsets that are relative to where the
code is stored. Thus the line:

movq counter (%rip), %rax

is compiled to load from an address at a specific offset from where that line
of code is stored. However, our desire is to write a snippet of instructions
that load from the absolute address of the variable counter no matter where
this code is located. To do this, we can accept the address of the counter

variable, &counter, as a placeholder to be filled in after copying the code
snippet.

.globl inc_counter_ins

.globl inc_counter_ins_end

inc_counter_ins :

movq $0xcafebabecafebabe , %rcx

movq (%rcx), %rax

addq $1 , %rax

movq %rax , (%rcx)

ret

inc_counter_ins_end :

8

Use this updated snippet to generate the instructions necessary to increment
the counter variable.

This technique will be necessary whenever you require an absolute address
in your instruction snippets, such as setting and retrieving global variables,
and jumping and branching to specific locations.

9 The Feeny JIT Compiler

9.1 Simplifying Assumptions

For the remainder of this course, we will be focused on optimization. To
simplify things, you may restrict your virtual machines to only handle valid
Feeny programs. Thus, for example, you may assume there is never a ref-
erence to a non-existent global variable, and that there will always exist an
appropriate method for a method call expression, etc. In other words, given
some Feeny program, if the AST interpreter completes execution and prints
the message s to the screen, your implementation must also complete exe-
cution and print s to the screen. However, if the AST interpreter becomes
stuck and exits with an error, the behaviour of your implementation is free
to be left undefined.

9.2 Structure of the JIT

We will use the following general strategy in structuring our just-in-time
compiler for Feeny. We will reserve these registers for the following purposes:

%rdi: Top of Heap

%rsi: Heap Pointer

%rdx: Stack Pointer

%rcx: Frame Pointer

To initialize and restore these registers before and after executing your JIT
generated code, we will use the following function:

.globl call_feeny

call_feeny:

movq %rdi , %rax

9

movq top_of_heap (%rip), %rdi

movq heap_pointer (%rip), %rsi

movq stack_pointer (%rip), %rdx

movq frame_pointer (%rip), %rcx

call *%rax

movq %rsi , heap_pointer (%rip)

movq %rdx , stack_pointer (%rip)

movq %rcx , frame_pointer (%rip)

ret

where we assume the existence of global variables top_of_heap,
heap_pointer, stack_pointer, frame_pointer, for holding their respective
machine states. The call_feeny function takes a single argument represent-
ing the starting address of the JIT code to execute, and returns whatever is
returned by the generated JIT code.

We will generate assembly sequences to implement as many bytecodes as
possible, but some bytecodes are too tedious to code in assembly. For these
bytecodes we will implement a simple trap mechanism to return to C where
we will perform the operation and then afterwards resume execution of the
JIT code.

9.3 Trapping to C

To suspend execution of the JIT and trap to C, we will record our current
position in the JIT code, and then return a special integer that indicates
which operation we want to perform in C.

leaq after_trap (%rip), %rax

movq $ADDRESS_OF_IP , %r8

movq %rax , (%r8)

movq $OPERATION_ID , %rax

ret

after_trap:

where ADDRESS_OF_IP is the placeholder for the address of the global variable
instruction_pointer, and OPERATION_ID is the integer representing the
operation to perform.

Thus the driver for the JIT code must check the returned integer of
call_feeny to know whether the program is done, or whether some op-

10

eration needs to be performed.

void drive () {

int running = 1;

while(running){

switch(call_feeny(instruction_pointer)){

case PROGRAM_FINISHED :

running = 0;

break;

case PERFORM_OP1 :

perform_op1 ();

break;

case PERFORM_OP2 :

perform_op2 ();

break;

...

case PERFORM_OPN :

perform_opn ();

break;

}

}

}

9.4 Order of Implementation

The ability to trap to C gives us the ability to incrementally develop the
JIT by initially implementing the majority of the bytecodes as traps to C.
Then we can individually replace each bytecode with equivalent assembly
sequences, and test the JIT as we go.

The following order of implementation is recommended.

1. Labels, Branches, and Gotos: The control flow operators require the
addresses of targets in the generated instructions, and thus must be
implemented together.

2. Literals, Set/Get Locals, Set/Get Globals, Drop: These can each be
individually developed as simple assembly sequences.

3. Return: This is a simple assembly sequence but requires some care to
get right as it forms half of Feeny’s calling convention.

11

4. Call: This operation is implemented in two parts. First we need to set
up the new frame, record the return address, and jump to the target
address. Second we need to somehow record the number of locals in the
new frame. However this value changes depending on which function
we are calling. To do this, insert a special prelude at the beginning
of each function to record the number of locals in its frame before it
begins execution of its body.

5. Object: This operation is complicated by the fact that most of the
time it can be implemented as a simple assembly sequence. However,
if allocation requires a garbage collection call, then it requires trapping
to C.

6. Array: If allocation requires a garbage collection call, then trap to C.
Otherwise the bytecode can be implemented in assembly. However,
this operation is not straightline code, and requires a loop.

10 Harness Infrastructure

You will be expected to execute Feeny programs from a given AST, and will
be using the harness from the bytecode compiler assignment.

The function

Program* compile (ScopeStmt* stmt)

in the file src/compiler.c will be the entry point of your bytecode compiler,
and will be called with the AST datastructure.

As in the last assignment

void interpret_bc (Program* p)

in the file src/vm.c will be the entry point of your bytecode interpreter and
will be called with the result of your bytecode compiler.

Your assembly instructions are expected to reside in the file src/vm.s.

12

10.1 Test Harness

The provided bash script run_tests will parse the test programs in the test
directory into ASTs and run your bytecode compiler and interpreter on the
result. To run it, type:

./ run_tests compiler.c vm.c vm.s

at the terminal. For each test program, e.g. cplx.feeny, the output of
your bytecode interpreter will be stored in output/cplx.out. The default
implementations of compile and interpret_bc do nothing except print out
the AST and bytecode IR respectively.

Please ensure that your implementation can be driven correctly by
run_tests. Your assignment will be graded using this script.

10.2 Compiling and Running Manually

To compile and run your implementation manually, you may also follow these
steps. Compile your interpreter by typing:

gcc -std=c99 src/cfeeny.c src/utils.c src/ast.c

src/bytecode.c src/compiler.c src/vm.c src/vm.s

-o cfeeny -Wno -int -to -void -pointer -cast

at the terminal. This will create the cfeeny executable.

Next, you have to run the supplied parser which will read in the source text
for a Feeny program and dump it to a binary AST file.

./ parser -i tests/cplx.feeny -oast output/cplx.ast

Finally, call the cfeeny executable with the binary AST file as its argument
to start the interpreter.

./ cfeeny output/cplx.ast

13

11 Report

Implement your bytecode compiler, interpreter, and assembly snippets and
place it in the src directory, naming it compiler_xx.c, vm_xx.c, and
vm_xx.s, where xx is replaced with your initials. Then ensure that it can be
properly driven by the testing harness by typing:

./ run_tests compiler_xx.c vm_xx.c vm_xx.s

Include your implementation of Towers of Hanoi, Stacks, and More Towers of
Hanoi from exercise 1, and ensure that your compiler and interpreter works
correctly for those as well.

1. (90 points) Compiler Statistics: Create a table in your report that
measure and calculate the following statistics for the test programs:
bsearch.feeny, inheritance.feeny, cplx.feeny, lists.feeny,
vector.feeny, fibonacci.feeny, sudoku.feeny, sudoku2.feeny,
hanoi.feeny, stacks.feeny, morehanoi.feeny.

(a) Total amount of time (in milliseconds) for interpret_bc to run
and return.

(b) Total amount of time (in milliseconds) to generate the instructions
needed for the JIT.

(c) Percentage of total time spent generating instructions.

(d) Reduction in total time spent in interpret_bc relative to before
implementing the JIT compiler (new/old).

12 Deliverables

Students may work in pairs or alone. Please submit your answers to sec-
tion 11 as report XX.pdf, and your programs as compiler XX.c, vm XX.c,
hanoi XX.feeny, stacks XX.feeny, and morehanoi XX.feeny. Zip all files to-
gether in a file called assign7 XX.zip. Replace XX above with your initials.
Mail the zip file to patrickli.2001@gmail.com with [Feeny7] in the sub-
ject header.

14

