Assignment 1: The Feeny Teaching Language

Patrick S. Li

August 12, 2015

1 Introduction

The Feeny programming language is an object oriented, imperative, dynam-
ically typed language designed to have similar core functionality as many
currently popular scripting languages (such as Python, Javascript, Ruby,
etc.) while remaining lean enough to be implemented by a single student in
a semester long course.

It was consciously designed to allow a naive and slow interpreter to be imple-
mented concisely, whilst requiring sophisticated dynamic compilation tech-
niques to obtain good performance. Through the course, students will de-
velop multiple implementations of Feeny, each with increasing sophistication
and performance, starting with a simple abstract syntax tree (AST) inter-
preter, and ending with a just-in-time (JIT) compiler.

This initial assignment will help students familiarize themselves with the
syntax and semantics of the Feeny language.

2 Running the Sample Programs

The included zip file includes a minimal Feeny interpreter and some sample
test programs for getting started. To run the provided Hello World test, type
the following into the terminal:

./feeny -e tests/hello.feeny



That should print
Hello World

to the screen.

3 Lexical Structure of Feeny

The current implementation of Feeny borrows the lexer of the Stanza pro-
gramming language, and has the same features and restrictions. Please pay
attention to the following properties:

3.1 Comments

Comments in Feeny are indicated by a semicolon and proceed to the end of
the line.

var ¢ = 0 ;Initialize ¢ to zero
while ¢ < 9 : ;Proceed when c is less then nine
begin-check () ;Check board.

3.2 Indentation Structuring

Feeny uses indentation to indicate structuring through the following tech-
nique: a line ending colon automatically surrounds the following indented
block with parenthesis.

Thus the following

while i < 10
do-this ()
do-that ()

is equivalent to

while i < 10 : (do-this() do-that())



3.3 Commas act as Whitespace

Commas in Feeny are treated identically to spaces, and are used solely for
readability.

Thus the following

f(a, b, c)

is equivalent to

f(a b c)

3.4 Opening Parenthesis

Identifiers immediately followed by opening parenthesis and braces are differ-
entiated from identifiers followed by whitespace. This most commonly occurs
in the syntax for function calls and array accesses.

The following code:
f(a(l + 2))
is the result of calling the function £ with a single argument: the result of
calling the function a with 1 + 3.
In contrast, the following code:

f(a (1 + 2))

is the result of calling the function £ with two arguments. The first argument
is a, and the second argument is (1 + 2).

4 Feeny Language Constructs

4.1 Expressions

Integer Literal: A special form for indicating a 32 bit integer.

42



Variable Reference: A special form used for referring to a local or global
variable.

X

Printing: A special form for printing out the values of a list of expressions
according to a supplied format string.

printf ("My age is ~.\n", 8)

Arrays: A special form for creating arrays of a given length with some initial
value.

array (10, 0)

Null: A special object that refers to the empty object with no slots.
null

Objects: A special form used for creating objects given a parent object and
a list of slots. See section 4.2 for a description of possible slots.

object (p)
var x = 10
var y = 10

method f ()
this.x + this.y

The parent object may be omitted, in which case the default parent will be
null.

object
var x = 10
var y = 10

method f ()
this.x + this.y

Method Calls: A special form used for calling a named method in a given
object with a supplied list of arguments.

o.f(10)

Slot Lookup: A special form used for looking up a variable slot in a given
object.

o.field



Slot Assignment: A special form used for assigning a new value to a vari-
able slot in a given object.

o.field = 42

Function Call: A special form is used for calling a named function with a
supplied list of arguments.

£ (10)

Variable Assignment: A special form used for assigning to a local or global
variable.

x = 42

If Expression: A special form used for testing against a predicate and then
conditionally evaluating one of two expressions.
if x
printf ("A")
else
printf ("B")

The else branch may be optionally omitted, in which case the default be-
haviour is to simply return null.
if x
printf ("A")

is equivalent to
if x
printf ("A")
else
null

While Expression: A special form used for repeatedly executing an ex-
pression so long as a given predicate is not null.

while p
X =X +y



4.2 Object Slots

Slot statements are used within object bodies for implementing object state
and behaviour.

Variable Slot: Variable slots are defined by a given name and an initializing
expression.

var x = 42

Method Slot: Method slots are defined by the method name, the argument
list, and a statement for the method body.

method f (x, y, z)
X +y

4.3 Local Statements

Local statements are used to represent function and method bodies, bodies
for the consequent and alternate branches in if expressions, and loop bodies
for while expressions.

Local Variable: Local variables are defined given a name and an initializing
expression.

var x = 42

Sequence of Statements: A sequence of statements can be grouped to-
gether by wrapping them in parenthesis.

(s1 s2 83 ...)

Local Expression: An expression can be used as a statement. Note that
the last statement in a method or function body must be an expression, and
indicates the return value of the method or function.

f(x)



4.4 Top Level Statements

Global Variable: Global variables are defined given a name and an initial-
izing expression.

var x = 42

Function: A function is defined by a given name, a list of arguments, and
a statement for the function body.
defn f (x, y, 2z)

X+y

Sequence of Statements: A sequence of statements can be grouped to-
gether by wrapping them in parenthesis.

(s1 82 83 ...)

Top Level Expression: An expression can be used as a top level statement.

f(x)

5 Syntactic Shorthands in Feeny

The listing of constructs in the previous section is exhaustive and details
every construct in the Feeny language. However, for convenience and read-
ability, a number of syntactic shorthands exist for common operators that
expand into one of the core constructs.



x + y expandsinto x.add(y)
x - y expands into x.sub(y)
X * y expands into x.mul(y)
x / y expandsinto x.div(y)
x % y expands into x.mod(y)
x <y expandsinto x.1t(y)
X > y expands into x.gt(y)
x <= y expands into x.le(y)
x >= y expands into x.ge(y)
x == y expands into x.eq(y)
x[y,z] expandsinto x.get(y,z)
x[ly,z] = w expands into x.set(y,z,w)

6 Operational Semantics of Feeny

The following rules informally describe the operational semantics of Feeny.

6.1 Interpreter Structures

Null: Null is a distinguished object that represents an environment with no
slots.

Environment: An Environment consists of a list of name-to-EnvValue pairs
along with a parent which may be either Null or another Environment. Envi-
ronments are used to represent function activation records as well as objects.
An EnvValue can be either a VarValue or a CodeValue.

e VarValue: A VarValue represents the storage location for a variable
and must support the following two operations: retrieving the current
value of the variable, and storing a new value for the variable.

e CodeValue: A CodeValue represents a function or a method. It con-
sists of a list of argument names and the statement corresponding to
the body of the function or method.

An Environment supports the following two operations:



1.

Adding a new binding. This is done by adding a new name-to-EnvValue
pair to the list of bindings in the environment.

Retrieving an existing binding by name. This is done by searching
the list of name-to-EnvValue pairs for one that matches the requested
name. If a pair is not found then the lookup is continued in the parent
environment.

Integers: An integer is assumed to be 32-bit number. An integer supports
the following arithmetic operations:

10.

© o N e ot W N

Add

Subtract

Multiply

Divide

Modulo

Equality

Less Than

Less Than or Equal
Greater Than

Greater Than or Equal

Arrays: An array represents an ordered sequence of storage locations of a
fixed size. An array is created given a size and an initial value. It supports
the following primitive operations:

1.
2.
3.

6.2

Retrieving the value at a given index.
Storing a value at a given index.

Querying the length of the array.

Evaluation Rules

For the following evaluation rules, an implicit global environment called genv
is assumed to be present for all rules which represents the top-level Environ-



ment. Rules are written assuming a list of assumptions is satisfied. If the
assumptions are not satisfied, then the evaluation is considered stuck. Im-
plementations are required to print an appropriate error message, and quit
gracefully in these circumstances.

Evaluating Expressions

Details the rules for evaluating an expression, e, inside an environment enu.
In the description for each rule, when a particular expression is said to be
evaluated, it is assumed to be evaluated in the environment env unless oth-
erwise stated.

Integers: Integer literals evaluate to the value that they represent.

Variable Reference: Assuming that a binding is retrievable in env with
the name of the variable, and that the binding is a VarValue, a reference
evaluates to the stored value in the VarValue.

Printing: The arguments are first evaluated in order. Then the format
string is printed to the screen where occurrences of tildes (7) is replaced with
an argument. The print expression evaluates to Null.

Array Creation: The given length and initial value are first evaluated.
Assuming that the length is a non-negative integer, then the expression eval-
uates to an array with the resultant length with every location set to the
initial value.

Null: Evaluates to Null.

Objects: The parent object, and all initializing expressions corresponding
to variable slots are evaluated. Assuming that the parent is either Null or
an Environment, the expression evaluates to a new Environment with the
given parent with bindings to VarValues for all variable slots, and bindings
to CodeValues for all method slots.

Method Calls: The receiver, and the arguments are evaluated. Depending
on the type of the receiver different rules apply.

e Method Calls for Integers: For methods add, sub, mul, div, and
mod, assuming that there is a single argument, the expression evaluates
to the arithmetic result of the corresponding operation.

10



For methods eq, 1t, le, gt, ge, assuming there is a single argument, the
expression evaluates to 0 if the corresponding primitive relation holds,
or Null if it does not.

e Method Calls for Arrays: For method length, assuming no argu-
ments, the expression evaluates to the length of the array.

For method get, assuming a single integer argument index that is within
bounds of the array, the expression evaluates to the result of retrieving
the value at the given index.

For method set, assuming two arguments, the first of which is an inte-
ger index within bounds of the array, the expression stores the second
argument into the array at the given index, and evaluates to Null.

e Method Calls for Environments: Assume that a binding is retriev-
able in the receiver with the method name, the binding is a CodeValue,
and the number of arguments given matches the number of arguments
expected by the CodeValue. The method call evaluates to the result of
evaluating the body under a new environment:

1. With parent equal to the global environment, genv.

2. With a binding from “this” to a VarValue containing the receiver
object.

3. With a binding from each argument listed in the CodeValue to
the respective argument in the method call.

Slot Lookup: The receiver object is evaluated. Then assuming that the
receiver is an Environment, that a binding is retrievable in the receiver with
the given slot name, and that the binding is a VarValue, the expression
evaluates to the value stored in the VarValue.

Slot Assignment: The receiver object, and the value is evaluated. Then
assuming that the receiver is an Environment, that a binding is retrievable
in the receiver with the given slot name, and that the binding is a VarValue,
the expression stores the value in the VarValue, and evaluates to that value.

Function Call: The arguments are evaluated. Assume that a binding is
retrievable in genv with the name of the function, that the binding is a
CodeValue, and that the number of arguments given matches the number of

11



arguments expected by the CodeValue. The function call evaluates to the
result of evaluating the body under a new environment:

1. With parent equal to the global environment, genv.

2. With a binding from each argument listed in the CodeValue to the
respective argument in the function call.

Variable Assignment: The value to assign is evaluated. Assume that a
binding is retrievable in env with the name of the variable and that the
binding is a VarValue. The expression stores the value into the VarValue
and evaluates to that value.

If Expression: If the predicate evaluates to Null, then the if expression
evaluates to the result of evaluating the alternate statement under a new
Environment with parent equal to env. Otherwise, the expression evaluates
to the result of evaluating the consequent statement under a new Environ-
ment with parent equal to env.

While Expression: If the predicate evaluates to Null, then the loop is
finished and the expression evaluates to Null. Otherwise, the body is eval-
uated in a new Environment with parent equal to env, and then the while
expression is re-evaluated under env for the next iteration.

Evaluating Local Statements

Details the rules for evaluating a local statement, s, given the local environ-
ment, env.

Local Variable: Assume that a binding with the given name does not
already exist in the top frame of env. Then the initializing expression is
evaluated and a new binding from the variable name to a VarValue containing
the initial value is added to the Environment.

Local Expression: The expression is evaluated under env. The statement
evaluates to the result of evaluating the expression.

Sequence of Statements: The statements are evaluated sequentially in
order. Note that the last statement in a function body, method body, if
body, or while body, must be an expression.

12



Evaluating Top Level Statements

Details the rules for evaluating a top level statement, s.

Global Variable: Assume that a binding with the given name does not
already exist in the genv. Then the initializing expression is evaluated and
a new binding from the variable name to a VarValue containing the initial
value is added to genv.

Function: Assume that a binding with the given name does not already exist
in genv. Then a new binding from the function name to a new CodeValue is
added to genv.

Top Level Expression: The expression is evaluated under genv, and the
result is discarded.

Sequence of Statements: The statements are evaluated sequentially in
order.

7 Understanding the Sample Programs

Read through the sample programs in the tests folder to familiarize yourself
with how Feeny programs look and are written. And answer the following
questions:

1. (4 points) The comparison operators, e.g. 1 < 2, return either Null or
0 which is somewhat odd compared to other programming languages.
Explain why Feeny might have been designed this way. How else could
Feeny have been designed and what are the tradeoffs?

2. (3 points) Feeny’s object model is significantly different than that of
Java, Python, and Ruby. In cplx.feeny, explain what the function
cplx does, and explain how it would have been written in one of the
above languages.

3. (3 points) In cplx.feeny, note that the fields real and imag are always
accessed through the slot expression this.real and this.imag. Read
through the semantics of method calls in Feeny again, and explain why
this is necessary. What would happen if this. was omitted?

13



8

. (3 points) For cplx.feeny, explain what advantages the complex num-

ber implementation in Feeny has over a similar implementation in Java.

. (4 points) Explain the significance of what is demonstrated by

inheritance.feeny. What does Feeny’s object model allow you to do
that is not possible in Java?

. (4 points) Java’s specification goes into detail about the default values

that class fields and variables have before they are initialized. For
example, ints have default value 0, and objects have default value
null, etc. However, there is no mention of this in the specification for
Feeny. Explain why.

. (4 points) There are two competing schools of thought in language

design concerning which of closures or objects is the more fundamental
construct. Explain how you might port a program written in another
language with heavy use of closures to Feeny.

Programming in Feeny

The following exercises will help familiarize yourself with writing Feeny code.
Use the supplied interpreter as detailed in section 2 to test your program.

1. (25 points) Towers of Hanoi: Towers of Hanoi is a classic logic puzzle

that you will solve with Feeny. There are three stacks, A, B, and C,
that can each hold a pile of plates. Stacks B and C are initially empty,
and stack A initially holds six plates sorted with the largest one on the
bottom and the smallest one on top. The only move you are allowed
to make is to remove a single plate from the top of one stack and place
it on the top of another, with the restriction that you can never place
a larger plate on top of a smaller plate. Write a program that prints
out the moves you need to move all the plates from stack A to stack
B. The output should be formatted to look like this:

Move plate from A stack to C stack
Move plate from A stack to B stack
Move plate from C stack to B stack
Move plate from A stack to C stack

14



2. (25 points) Stacks: Here you will implement a stack library that sup-
ports the following operations:

e Creating a stack with a given maximum capacity.

Pushing a new item onto the stack.

Peeking at the top item on the stack.

Popping an item from the stack.

Getting the current size of the stack.

Demonstrate that your stack library is correct by making sure the fol-
lowing test runs:

var s = stack(10)

;Push items

var i = O

while i < 10
s.push(i * 10)
i=1i+1

;Pop items

while s.size > 0
printf ("About to pop: ~“\n", s.peek())
printf ("Popped: ~“\n", s.pop())

3. (25 points) More Towers of Hanoi: Use your stack library from the
previous exercise to refine your implementation of Towers of Hanoi. The
initial six plates on stack A will now each be labeled with a number.
The largest plate at the bottom is plate 6, and the smallest plate at
the top is plate 1. For each move, in addition to printing out which
stack you are moving the plate from and to, also print out which plate
you are moving. The output should be formatted to look like this:

Move plate 1 from A stack to C stack
Move plate 2 from A stack to B stack
Move plate 1 from C stack to B stack
Move plate 3 from A stack to C stack

15



9 Deliverables

Students may work in pairs or alone. Please submit your answers to sec-
tion 7 as report_XX.pdf, and your programs for section 8 as hanoi_XX.feeny,
stacks_XX.feeny, and morehanoi_XX.feeny. Zip all files together in a file
called assign1_XX.zip. Replace XX above with your initials. Mail the zip file
to patrickli.2001@gmail.com with [Feeny] in the subject header.

16



