
Assignment 4: Writing a Feeny Bytecode
Compiler

Patrick S. Li

September 18, 2015

1 Introduction

In this assignment, you will implement the bytecode compiler for compiling a
Feeny program expressed as an abstract syntax tree into the Feeny bytecode
format. After implementing this portion of the system, you will have a
complete self-contained system that is able to compile and execute Feeny
programs.

While the compiler is a separate part of the system that does not influence the
design or implementation of the virtual machine, it is important to realize
that virtual machines are seldom developed in isolation. Although in our
exercises you implemented the bytecode interpreter and will now implement
the compiler, in reality the two pieces would likely be developed in tandem.
The design of the compiler will influence the bytecode IR, and the interpreter
will also influence the design of the compiler.

2 Harness Infrastructure

Your task is to compile a Feeny program from its abstract syntax tree into
the Feeny bytecode IR. The semantics of the Feeny language and of the Feeny
bytecode are defined in the previous assignments.

1



A minimal framework is provided for you for lexing and parsing Feeny pro-
grams into in-memory datastructures that represent the abstract syntax tree.

The function

Program* compile (ScopeStmt* stmt)

in the file src/compiler.c will be the entry point of your bytecode compiler,
and will be called with the AST datastructure.

As in the last assignment

void interpret_bc (Program* p)

in the file src/vm.c will be the entry point of your bytecode interpreter and
will be called with the result of your bytecode compiler.

2.1 Bytecode Data Structures

The data structures for representing the bytecode are defined in the file
src/bytecode.h. src/bytecode.c implements a pretty printer for viewing
the bytecode instructions as text. You may also read the implementation of
this pretty printer to see how to operate on this data structure.

The print_value function prints out a constant in the constant pool. The
print_ins function prints out a single bytecode instruction. The print_prog
function prints out the entire bytecode program.

The compiler will need to correctly create these data structures as its output,
so that they can be read back by your interpreter.

2.2 Test Harness

The provided bash script run_tests will parse the test programs in the test
directory into ASTs and run your bytecode compiler and interpreter on the
result. To run it, type:

./ run_tests compiler.c vm.c

at the terminal. For each test program, e.g. cplx.feeny, the output of
your bytecode interpreter will be stored in output/cplx.out. The default

2



implementations of compile and interpret_bc do nothing except print out
the AST and bytecode IR respectively.

Please ensure that your implementation can be driven correctly by run_tests.
Your assignment will be graded using this script.

2.3 Compiling and Running Manually

To compile and run your implementation manually, you may also follow these
steps. Compile your interpreter by typing:

gcc -std=c99 src/cfeeny.c src/utils.c src/ast.c

src/bytecode.c src/compiler.c src/vm.c

-o cfeeny -Wno -int -to -void -pointer -cast

at the terminal. This will create the cfeeny executable.

Next, you have to run the supplied parser which will read in the source text
for a Feeny program and dump it to a binary AST file.

./ parser -i tests/cplx.feeny -oast output/cplx.ast

Finally, call the cfeeny executable with the binary AST file as its argument
to start the interpreter.

./ cfeeny output/cplx.ast

3 Report

Implement your bytecode compiler and interpreter and place it in the src

directory, naming it compiler_xx.c and vm_xx.c, where xx is replaced with
your initials. Then ensure that it can be properly driven by the testing
harness by typing:

./ run_tests compiler_xx.c vm_xx.c

Include your implementation of Towers of Hanoi, Stacks, and More Towers of
Hanoi from exercise 1, and ensure that your compiler and interpreter works
correctly for those as well.

3



1. (55 points) Compiler Statistics: Create a table in your report that
measure and calculate the following statistics for the test programs:
bsearch.feeny, inheritance.feeny, cplx.feeny, lists.feeny, vector.feeny,
fibonacci.feeny, sudoku.feeny, sudoku2.feeny, hanoi.feeny, stacks.feeny,
morehanoi.feeny.

(a) (2 point) Total amount of time (in milliseconds) for compile to
run and return.

(b) (2 point) Total amount of time (in milliseconds) for interpret_bc
to run and return.

(c) (1 point) Percentage of total time spent in compilation.

2. (20 points) Reverse Engineering: One supposed benefit of distribut-
ing programs in compiled form over source form is increased control
over intellectual property. What information is lost about a Feeny pro-
gram through compilation? Suppose we did our best to write a Feeny
reverse compiler to turn Feeny bytecode IR back into source text. Pro-
vide an example of what vector.feeny might look like after reverse
compilation.

3. (10 points) Semantics: Due to the design of the Feeny bytecode IR, the
semantics of the Feeny AST interpreter is ever so slightly different than
that of the Feeny bytecode interpreter. What is this difference? If Feeny
were to become a widely used and critically acclaimed programming
language, how might this difference lead to portability issues between
different Feeny implementations?

4. (8 points) Bytecode Specification: Currently our system reads in a
Feeny AST, compiles it into bytecode, and then directly interprets the
bytecode. Thus the bytecode IR is completely internal to the system
and not exposed to the user. If we want to be able to distribute Feeny
programs in the compiled bytecode format, what else do we need to
specify?

5. (7 points) Labels: To express control flow constructs, the Feeny byte-
code IR uses labels to indicate targets of goto and branch instructions.
This contrasts with the Java bytecode, which uses integer offsets. Dis-
cuss the advantages and disadvantages of the two designs.

4



4 Deliverables

Students may work in pairs or alone. Please submit your answers to sec-
tion 3 as report XX.pdf, and your programs as compiler XX.c, vm XX.c,
hanoi XX.feeny, stacks XX.feeny, and morehanoi XX.feeny. Zip all files to-
gether in a file called assign4 XX.zip. Replace XX above with your initials.
Mail the zip file to patrickli.2001@gmail.com with [Feeny4] in the sub-
ject header.

5


